
Discrete Mathematics 36 (1981) 191-203 
North-Holland Publishing Company 

D. Hugh REDELMEIER 
Department $,f Computer Scietze, Univendy of Toronto, Toronto, Ontario, M5S lA7 Canada 

Received 18 September 1979 
Revised 22 August 1980 

A polyomino is a connected collection of squares on an unbounded chessboard. There is no 
known formula yielding the number of distinct polyominoes of a given number of squares A 
polyomino enumeration method, faster than any previous, is presented. This method includes 
the calculation of the number of symmetric polyominoes. AU polyominoes containing up to 24 
squares have been enumerated (using ten months of computer time). Previously, only 
polyominoes up to size 18 were enumerated. 

1. What is a polyomiao? 

A domino is a pa I of equal sized squares touching along a complete edge (we 
ignore the spots). Generalizing, a polyomino is a collection of equal-sized squares 
in a plane, touching each other along complete edges. We call these squares cek. 
Here are a few examples: 

0 

Every cell need not rour,h 
Thus, the pair of cells 

00 &I o&l 

every other one, but a polyomino must be connected. 

cl 
0 

since they are not connected. 
connected graph in which each node (or cell) is 

do not constitute a 
Formally, a pslyomino is a 

identified with a point in the Cartesllan lattice, and edges of the graph join nodes 
that are separated by a unit distance. The size of a polyomino is the number cells 
it contains. 

cerne.l with is “ 

are two sets of distinguishing rules commonly used, and for each set there is a 
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are the same free polyomino since they differ only in orientation. We use free(p) 
to denote the number of free polyominoes of size p. 

r;E’~c?d polyominoes are considered distinct if they have different shapes or 
orientations. Thus the t-tie rJolyominoes above are Mferen?; fixed polyominoes. 
We use fixed(p) to denote the number of Cxed polyominoes o:f size p. 

The most general discussion of polyominoes is by Golomb [l], however the 
number of polyominoes is only briefly discussed. Unlike most later authors 
(including us) Golomb does not allow holes in polyominoes. Thus he would not 
accept the following as a poiyomino. 

Ew 
oco 

Read [2] derived 3bv.-. .A .- _ _ ---*rot th ---tical results about the number of polyominoes. 

HE: presented a method for deriving generating functions to calculate the number 
of polvominoes, but these become intractable very quickly. He calculated free(p) 
for p up to 10, but his value for size 10 was incorrect. 

Klarner [3] found bounds for free(p) and fixes(p); the upper bound was 
improved by Klarner and R;vest [4]. The limits of the pth roots of free(p) and 
fixed(p), as p approaches infinity, were shown to be equal and between 3.72 and 
4.65. Obviously then, free(p) and fixed(p) are exponential in p. 

Lunnon [5] has made the most successful previous enumeration. He computed 
the number of free, fixed, and symmetric polyominoes up to size 18. We believe 
his results for size 17 are incorrect. Our work is most closely related to Lunnon’s. 

The key to the difference between fixed and free poiyominoes is the symmetries 
of polyominoes. Every free polyomino corresponds to one, two, four, or eight 
fixed polyominoes, depending on its symmetry. For tample, a very symmetric 
free polyomino, such as 

corres 
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example: 

A. polyomino is said to have a certain symmetry if it is invariant under the 
transformation(s) associated with that symmetry. Since, for example, the 
polyominc 

is unchanged when rotated by Q radians, it is said to be rotationally symmetric. 
Symmetries of free and tied polyominoes are similar, but only tied polyomino 
symmetries involve orientation (for example, reflection in the hotizontul axis). 

Table 1 catalogues the symmetries of po:yuminoes. The parenthetical note in a 
transformation (the last column) orients it for tied symmetries; without this 
orientation, the transformation is that of a free symmetry. Two pairs of transfor- 
mations diEer only in orientation, and therefore each pair ;tepresents one free 
symmetry. The index of a symmetry is the number of fixed polyominoes corres- 

Table 1 

Free Fixed Index Example Transformation(s) 
-- __ 

none 

rot 

axis 

axis 

diag 

diag 

rot 2 

axis 2 

diag 2 

all 

N 

R 

H 

V 

A 

D 

R2 

HVADR2 

2 

2 

1 

OH0 
“B 

B0 

Q000 
EPa 

00 

O&l 

Tn 

III 

none 

rotation by v raclians 

reflection in (horizontal) axis 

reflection in (vertical) axis 

reflection in (ascending) diagonal 

r&&ion in (descending) diagonal 

rotation by HIT radians 

reflection in eitkr axis, 
or rotation ITS ?T radians 

reflection in either diagonal, 
or rotation by 3 radians 
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ponding ?O each free polyomino with that symmetry. The columns labelled “Free’ 
and ‘Fixed’ give our names for t me free and fixed symmetries, respectively. 

We call each symmetry with index 4 simple because it nas one transformation 
associated with 3, Each symmetry with index less than 4 is composite since it has 
cpl’pral transfor.),:-itic;:s ;?ssaciatecI with it. Note thar the transformation of R2 “V.” 
subsumes rotation by n radiant. Each composite symmetry includes simple 
symmetries in the sense that any polyomino with a composite symmetry will also 
have simple symmetry: one simple symmetry for ea*ch of the composite sym- 
metry’s transformations. For example, HVR symmetry includes H, V, and R 
symmetries. Not all combinations of simple symmetries exist as composite sym- 
metries because some combinations i!mply further symmetry. Thus H and V 
symmetry together imply R symmetry. 

We shall use the name of a symmetry to denote the function that maps ;r 
polyomino size into the number of polyominoes of that size having only that 
symmetry. Thus N(p) is the number of fixed polyominoes of size p with no 
symmetry. We shah also put a prime after the symmetry name to denote the 
mapping yielding the number of po.lyominoes with at least that symmetry. Thus 

H’(,n’ = H(p) + HVR(p) + II’L4DR2(p) , 

N’(p) and fixed(p) are obviously equivalent. 
Most polyominoes have no symmetry, since requiring a symmetry reduces the 

“degree of freedom” in constructing a polyomino. With any simple symmetry, the 
position of roughly half ;he cells almost completely specifies where the remaining 
cells must be placed. Since fixed(p) is exponential in p, the number of simply 
symmrtric polyominoes of size p is roughly prl)portional to filed(p). Similarly, 
there are many fewer polyominoes with composite symmetries than with simule 
symmetry. Since *most polyominoes are asymmetric, fixed(p) is close to eight times 
free(p), for large enough p. 

oes are em? 

Although it is known that both free(p) and fixed(p) are exnonentiai in F there 
is no Kt,own formula for eitl er. To calculate values for them, we must f’all back on 
exhaustive enumeration. 

Enumerating polyominccs is very expensive. The coca is directly proportional to 
the rjumber enumerated, and, in the range we are concerned with, each unit 
increase in ;I increases the numbers of polyominoes bv a factor of almost four. 
The most successful. enumeration to date [S; used 175 hours of computer time. 
Clearly, to get much Girther, we must be r,iuch more efficient. 

given p, we worjld like to generate and y free polyomi 
“\l?‘C do not know 
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and rejcctiing unacceptable members, expending effort in generating useless 
configurations, and in testing each configuration. In fact, this larger set is at least 
the fixed polyominoes. 

We do know how to generate fixed polyominoes without generating useless 
configurations. It turns out that this generation is quite efficient, largely because 
no configuration need be rejected and therefore no testing is needed. In fact, we 
can compute fixed(p) faster than free(p) even thutigh there are almost eight times 
as many polyominoes to count. 

We have also developed separate methods to generate polyominoes that are 
constrained to have at least a given simple fixed symmetry. These methods are 
almost as fast, per polyomino counted, as the fixed polyomino generator. Thus we 
can calculate the primed simple symmetry functions relatively cheaply. We can 
also piggyback on these the primed composite symmetry function comyputations. 

There is a well krrown way to count cattle in a herd: count the number of legs 
and divide by four. We apply this technique in calculating free(p). We first 
enumerate fixed(p). We then separately enumerate the primed symmetry func- 
tions, and derive from them their unprimed counterparts. Finally, we derive 
free(p) from these figures: free(p) is the sum, for each fixed polyomino, of the 
inverse of the index of the polyomino’s symmetry. Thus, an asymmetric fixed 
polyomino counts as one-eigth of a free polyomino, whereas an IIVADR2 fixed 
polyomino counts as one free polyomino. 

Since the number of symmetric polyominoer is proportional to w, and 
since the cost of our enumeration is proportional to the number of items 
enumerated, the dominant computation will be the enumeration of fixed(p). 

to en emte OeS 

To ensure fixed polyominoes a;e counted exactly once, we define a canonical 
form for them. In this form there is a cell at the origin of the Cartesian lattice, no 
cell; below the x-axis, and no cells to the left of the origin on the axis. Tnis forces 
the ieft-most cell of the bottom row of the polyomino to be at the origin. 

The algorithm calculates fixed(p) for all p up to a s;tiecifited limit k): using a 
depth-first traversal of a “f 
in ‘he tree consists of its par i\e cell is chosen so 

thzl no older brother or ancestor’s olde 
o&pring might). Equivalently, no youilger 
will be allowed to contain t 
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The following routine is given a po’lyomino (the parent) and a set if untried 
points. The untied set contains all points that are adjacent to the parent and have 
not been used by the ancestors (including the parent) or the ancesto:rs’ udder 
brothers. Tke following steps are repeateo until the untried set is exhaustted. Each 
iteration generates 11 child of the parent. Each recT>rsion generates all the offspring 
of the current child. 

1. Remove an arbitrary element from the untried set. 

2. Place a cell at this point. 
3. Count this new polyomino. 
4. If the size is less than P: 

(a) Add new neighbours to the ur tried set. 
(b) Call this algorithm recurski) with the new parent being the 

current pol)/omino, and the new untried set being a copy of the 
current one. 

(c) Remove thl:,: new neighbours from the untried set. 
5, Remove .?ewesI cell. 

The algorithm is started with the parent being the empty polyomino, and the 
IAntried set containing only the origin. 

At any one time, each point in the fieBd can be in one of four states: 

&r&r: points below the x-axis and points left of the y-axis on the 
X-aXiS. 

Occupied: points occupied b!, cells of the polyomino. 

Reachable: unoccupied non-border points adjacent to cells of the 
polyomino. 

Free: points that are none of the above, and therefore candidates for 
becoming Reachable and then Occupied. 

The only Information actually needed by the algorithm is whether 7 pkt is 
Free or not. This information allows Step 4(a) to decide if a neighhour is new or 
not. The infer-nation is updated in Step 4(a) when the new points are added to the 
untried set, and then restored in Step 4((-) when they are removed. Note that the 
information is not changed in Step 1. 

e untried set contains those Reachable points that have not been trick by the 
current invo(*ation of the algorithm or its recursive ancestors. While a point is in 
the ;intried set at some level in the recursion, it cannot be ;\dded to the untried set 
of another level. Otherwise a point could become a new netghbour while it is an 
old one. A point may, however, be in several untried sets at once due to 
inheritance. An invocation of the algorithm will, itself, coupt each polyomino 

ining the parent and nt in the untried s,?t he p%uent’s 
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containing the parent an6 cells that are at points in the untried set or points 

currently Free (the parent’s off spring). 
The operations performed on the untried set &>re: 

-removing an arbitrary element (Step l), 
- adding new elements (Step 4(a)), 
- copying and passing as a parameter (Step 4(b))! 
-removing new elements (Step 4(c)). 

All operations can fit into a stack discipline where elements are removed in the 
reverse of the order they were added. The arbitrary element chosen in Step 1 
would then be the newest element. 

The successor of an element in the untried set is the next-newest element. Note 
that, due to the stack discipline, the successor of an element never changes. Even 
though a point can be zin element in se deral untried sets, its successor in each case 
will be the same point: a point’s successor is determined when the point becomes 
a new neighbour, and is not changed by inheritance. 

A natural way to implement the untried set is, for each point in the field, to 
2ave a place to name its sucessor in all current untried sets. This allows an 
un~tried set to be represented by the name of its first (newest) element, with each 
element naming its successor- a linked list. All the operations used are then quite 
efhcient: 

- Removing an element is done by considering the successor of the 
current first element to be the new first element. 

- Adding a new point is done by setting the successor or* the new point to 
be the current first element, and then considering the new point to be 
the first element. 

- Passing the list as a parar; .- ‘Oter is done by passing the name of the first 
element. Thus the whole set need not be copied. 

Both Free information and sueiessor information are naturally represented as 
matrices, with one element or each point in the field that can be used. These 
matrices represent points w h y co-ordinates between -p + 1 and p - 1, and x 
coordinates between -1 (for the border) and p - 1. Slightly more than half the 

but this causes no problems. 

All polyominoes ge 
origin because that is 
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In this section, we describe 1 low to compute the number of symmetric Sxed 
polyominoes of each kind: the “primed”’ functions. We shall see tha; some of the 
functions can bt derived from others, but ‘some require enumeration. All compu- 
tations involve modified ver.l;ions of the enumeration algorithm used for fixed 
polyominoes. 

The general strategy used to enumerate symmetric polyominoes with a given 
simple symmetry is to identify each point in the field with its image under the 
symmetry’s transformation. Points in the axis of symmetry, or at the centre, are 
already their own image. Whenever a sell is placed at a point, one is placed at the 
point’s image. Similarly, whenever a point becomes a new neighbour, its image 
does too. Bet, of course, the new neighbour and its image are the sanze new 
neighbour, and t4ey become one entry in the untried set. In general, each point 
and its image are represented by a unique **epresentative (usually the one in the 
upper half cf the field). When calculating the size of a polyomino, however, each 
ce!l and its distinct image(s) are counted separately. Thus the generated 
palyominoes will be invariant under the transformation (that is, symmetric) by 
constructim. 

The first step in the analysis is to 
based on whether an axis of symmetry 
For 5:xample. consider the HVADR2 

break the primed functions down further, 
or centre is at a point, or is between points. 
polyomino and the two V polyominoes 

The centre of the HVADR?: polyomino is a point, while the axes of symmetry of 
the two V polyominoes run through and between (columns of) points, respec- 
tively. If a symmetric yolyomino has a centre at a point, or an axis of symmetry 
running thretigh r;oints, we add an “I” to Ihe symmetry name. Similarly, if the 
centre is between points, or the axis runs between rows or columns of points, we 
add an “X” to the name. Thus, the example polyominoes have, respectively, 
HVADR21, VI, and YX symmetry. 

HVR and R symmetries have a centre that can be independently “I” or “X“ in 
the vertical and horizontal dimensions. F,or example, 

has HVRXI symmetry sin!:e the ientre is between rows but irside a column. Note 
that the X symmetries are mutually exclusive of the I symmetries in each 
dimension. 

The following list shows how “X” anct “I” can be combined with fixed 
symmetries. 
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N has neither axis nor centre, 
H=HX+HH, 
V=VX+VI, 
R=RXX+RXI+RlX+RII, 
A and D have an axis which runs both between and through cells, 
HVR = HVRXX + HVRXI + HVRIX + HVRII, 
R2 = R2X + R2I, 
ADR = ADRX + ADRI, 
HVADR2 = HVADR2X + HVAD 

Now let us look at each symmetry function individually. 
HX’(p) is zero if p is odd since evepr cell in an HX’ polyomino implies its 

image’s existence, and a cell must be distinct from its image. When p is even, 
HX’(p) equals N’($p): and N’ polyomino can be turned into an HX” polyomino of 
twice the size by reflecting the original at its bottom edge, and the reverse 
operation of slicing an HX’ bolyomino altDng its axis yields an N’ polyomino. 

To enumerate HI’ polyominoes, we use the general strategy of identification 
outlined above. In our canonical form, the x-axis is the axis of symmetry, and the 
left-most cell on the axis is forced to be at the origin. For each pair of identified 
points, the one above the axis is taken as the representative. There is no 
interaction between the upper and lower half of the field so that only representa- 
tive points are used. We forbid representative cells to be placed below the axis, or 
to the left of the origin on the axis. It turns out that the HI’ enumerator is 
identical to the fixed enumerator except in calculating the size of polyominoes 
produced: each cell off the x-axis represents two; each on the axis represents only 
one. 

VX’(il) is equal to HX’(p) and VI’(p) is equal to HI’(p), of course. 
A’(p) is computed by a modified version of the HI’(p) enumerator. The change 

is a kind of counterclockwise rotation by 4$rr of the field. Thus, the diagonal takes 
the place of the x-axis. The initial cell is the same: the origin. The canonical form 
of an A’ polyomino has the lowest ceil on the diagonal of symmetry at the origin. 

D’(p) equals A’(p). 
In a rotationally symmetric polyomino, only a cell at the centre can be its own 

image. Thus rotationally symmetric polyominoes have an odd size if and only if 
they have a centre cell. Let us consider the enumeration of odd-sized and 
even-sized rotationally symmetric polyominoes separately. 

All odd-sized rotationally 
since the ccntre must be a c 

II’ polvominoes 
enumerators, growth in the upper and lower halves of t 

ust actually place i 
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The enumeration of even-sized rotationally symmetric polyominoes is the most 
complex. In every other case, polyominoes are grown, starting from a polyomino 
with one cell (or on.; cell plus its image) having the desired prop rty. Unfortu- 
nately, not all even-sized rotationally symmetric polyominoes contain an approp- 
riate subpolyomino. For example, removing _4y cell plus its image from 

causes it to be disconnect:& and thus it cc” lnot be grown from a smaller 
polyomino. 

A simple way to enumerate even sized rotationally symmetric polyominoes 
would be to gx-ow symmetric collections of cells, and count each one only if it is 
connected. Unfortunately this method is quite slow because most configurations 
generated would -lot be connected. We use a faster and more complicated 
method. 

Every rotationally symmetric polyomino contains a collection of symmetric 
subpolyominoes sharing its centre. This collection is never empty since it at least 
contains the original polyomino. Some of these subpolyominoes are minimal in 
the sense that removing any cell and its image would disconnect the polyomino. 
Of these minirnal subpolyominoes, there is exactly one that surrounds the 
minimum number of points. This subpolyomino is called the tirtg. In odd-sized 
rotationally symmetric polyominoes, the ring is the centre cell, but in eliren-sized 
polyominoes the ring may be quite large. Here are a few polyominoes with their 
ring cells denoted by 

As these examples demonstrate, rings surround a (possibly empty) part of the 
field, hence their name. It is also notable that each cell in a ring touches exactly 
two others in the ring, except in degenerate rings of one or two cells. If this were 
not the case, some cell and its image could be removed without cutting the ring. 

Our enumeration method generates each possible ring, and then from these it 
grows each possible rotationally symmetric polyomino. Once the ring is gener- 
ated, connectivity need never be a problem since each new cell may be placec 
adjacent to th’e rest of the polyomino. What is important, l-owevcr, is that the ring 
from which a lplolyomino is grown mut be the ring of that rjoiyomino, !: that each 
polyomino is generated only once. 

To ensure this last property, growth inside the ring is restricted to ensure that it 
doe5 not make any part of the ring removable. All growth inside the ring. must be 
connected to the ring. Any subpolyomino inside the ring that touches the ring 
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must touch it at one edge, or at most two edges that are co-linear and adjacent, in 
order not to “short-circuit’? the ring. Here are two examples of filled rings. 

The methods used to grow rings and then their offspring are fairly straightfor- 
ward. 

All remaining symmetries are composite. Several can be computed directly 
from these relations: 

HVRXX’(2p) = HX’(p)_ 
HVRXI’(2p) = HI’(p), 
HVADR2X’(4p) = A’(p). 

Unmentioned vahes of these fulrctions are zero. 
enumerated by checking polyominoes generated 
for additional symmetry. 

Other composite symmetries are 
in simple symmetry enumerators 

The fixed enumerator has been coded in fewer than fifty statements of the 
ALGOL W programming language. It has aIso been coded in the assembly 
language of the PDP- 11 computer. This version has been run for polyominoes up 
to size 24, taking ten months of CPU time on a PDP- 1 L/70. 

The symmetric enumerators have been coded in ALGOL W, and run up to size 
25. The total CPU time was less than five minutes on an IBM 370 model 165. 
This confirmed our expectation that fixed(p) would be the dominanrt computation. 

Table 2 lists the values of free(p) and fixed(p) for p up to 24. Table 3 lists the 
number of polyomino:s of each free symmetry type up to size 25 (except for 
none(25), whict requires fixed(25)). 

The values agree with those unnon computed except for size 17. In several 
runs :he program has computed the value of ed(l7) to be 400795844 versus 

FoPyominoes since a 
our calculation of fi 
way our program works, it is v~t~ally 
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Tat-k 2 
_----_ 

fret fiXCC1 CPU hrs 

1 

2 
3 
4 

5 
6 
7 
8 
9 

IO 

I1 

13 

II; 

14 

95 

16 

17 

18 

19 

20 

“‘I 

‘2 

2.3 

23 

1 
1 
2 
5 

12 
3s 

108 

369 
12x5 

4655 
17073 
63600 

238591 
901971 

3426,‘,76 
13079x5 
50107~909 

192622OS2 
742624232 

287067 1.9% 
1 1 12306M’78 
33191857688 

168047007728 
‘549997CVlA~U , ., ., . II 

1 - 

2 - 

6 - 

19 - 

63 _- 

216 _- 

760 _- 

2725 _- 

9910 - 

36446 _- 

135268 _- 

50586 1 -- 

1903890 - 

“204874 - 

Et’394666 - 

104192937 0.148 

4007(iS844 0.560 
154CA20542 2.138 
59X 738676 8.196 

2296h 179660 3 1.409 

88983512783 126.957 
345532572678 467.053 

1344372335524 1807.263 
<‘Y400?2!277()2fj8 d-d,,, c, 6959.665 

large discrepancicg; with p;_edicted values. In this case, the discrepancies are 
miniscule. For the se reasons, we believe our result to be correct. 

In me run on ;i PDP-H/70 the program computed fixed(r) for p up to and 
including 18 in two hours. This compares well with Lunnon’s 175 hours, although 
his ms!cTtine (an ATLAS I) was somewhat slower. l’robably the main reason for 
our program being faster is that it need not check for symmetry or canonicity of 
generated polyominoes. 

It seems unlike’ly that any technique that actually generates every polyomino 
could :get much farther than ours. The fixed enumerator generates polyominoes at 
betrer than one every five microseconds. Future work on polyomino enumeration 
magi be aimed at calculating fixed(p), since we ha\ e shown how to compute 
free{ p relatively cheaply given fixed(p). 

eats 

R.C Read introduced me to the problem, and suggested. I publish my results. 
any people have helped me find splnre computer time. R.C. Re:aC, D.A. 

Elliot deserve thanks for their 
aper. 
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Table 3 

all axis 2 rotate 2 diag 2 axis rotate diag none 

1 

1 
1 

1 
2 

3 
2 

5 
4 

12 
7 

1 
1 
1 
1 
2 
3 
4 
4 
8 

10 
15 
17 
30 
35 
60 
64 

117 
i28 
236 
241 
459 
475 
937 
312 

1 

3 
2 

12 
7 

44 
25 

165 
JO 

1 
1 

1 
2 
3 
3 
5 
6 

14 
9 

20 
20 
56 
32 
80 
64 

224 
114 

1 1 
2 1 
6 5 
9 4 

23 18 
38 19 
90 73 

147 73 
341 278 
564 283 

1294 lo76 
2148 1090 
4896 41.?5 
8195 41133 

18612 15939 
3 1349 16105 
70983 61628 

120357 62170 
271921 2 39388 
4637 12 240907 

1045559 932230 
1792582 936447 

1 

2 
2 
7 
5 

26 
22 
91 
79 

326 
301 

1186 
1117 
4352 
4212 

16119 
15849 
60174 
60089 

226146 
228426 
854803 

1 
5 

20 
84 

316 
1196 
4461 

16750 
62878 

237394 
899265 
3422 11 

13069026 
50091095 

192583152 
7425605 11 

2870523142 
11122817672 
43191285751 

168046076423 
654997492842 

3 

References 

II’ 
PI 
E3.l 
r41 

I51 

S.‘ti. GJlomb, Polyominoes (Charles Scrkner’s, New York, 1965). 
F..C. Read, iSontributions to the cell growth problem, Canad. J. Math 14 (1962) l-20. 
C.A. Klarner, Cell growth problems, Canad. J. Math. 19 (1967) 851-863. 
L?.A. IGarner and R. Riverst, A procedure for improvirlg the upper bound for the number of 
n-o;r.inoes, Canad. J. Math. 25 (1973) 585-602. 
W.F. Lurrnon, Counting polyominoes, in: A.O.L. Atkin, L3.J. Birch, eds., Computers in Number 
Theory (Academic Press, London, 1971) 347-372. 


