Discrete Mathematics 36 (1981) 191-203
North-Holland Publishing Company

COUNTING POLYOMINOES: YET ANOTHER ATTACK

D. Hugh REDELMEIER

Department of Computer Science, University of Toronto, Toronto, Ontario, M5S 1A7 Canada

Received 18 September 1979
Revised 12 August 1980

A polyomino is a connected collection of squares on an unbounded chessboard. There is no
kown formula yielding the number of distinct polyominoes of a given number of squares A
polyomino enumeration method, faster than any previous, is presented. This method includes
the calculation of the number of symmetric polyominoes. All polyominoes containing up to 24
squares have been enumerated (using ten months of computer time). Previously, only
polyominoes up to size 18 were enumerated.

1. What is a polyomino?

A domino is a pa . of equal sized squares touching along a complete edge (we
ignore the spots). Generalizing, a polyomino is 2 coliection of equal-sized squares
in a plane, touching each other along complete edges. We call these squares cells.
Here are a few examples:

o oo Bo obo
Every cell need not touch every other one, but a polyomino must be connected.
Thus, the pair of cells

u]
(W}

do not constitute a polyomino since they are not connected.

Formaily, a polyomino is a connected graph in which each node (or cell) is
identified with a point in the Cartesian lattice, and edges of the graph join nodes
that are separated by a unit distance. The size of a polyomino is the aumber cells
it contains.

The question that this paper is concerned with is “How many polyominoes of
size p are there?” The answer depends on how we distinguish polyominoes. There
are two sets of distinguishing rules commonly used, and for each set there is a
name for the polyominoes.

Free polyominoes are considered distinct if they have different shapes. Their
orientation and location in the plane is of no importance. For example, the two

0012-365X/81/0000-0000/$02.50 © North-Holland

192 D.H. Redelmeier

polyominoes

o oo

}
are the same free polyomino since they difier only in orientation. We use free(p)
to denote the number of free polyominoes of size p.

Fixed polyominoes are considered distinct if they have different shapes or

orientations. Thus the twoc nolyominoes above are differen: fixed polyominoes.
We use fixed(p) to denote the number of fixed polyominoes of size p.

2. Relaied work

The most general discussion of polyominoes is by Golomb [1], however the
number of polyominoes is only briefly discussed. Unlike most later authors
(including us) Golomb does not allow holes in polyominoes. Thus he would not
accept the following as a poiyomino.

(mim]

0o
0
ca

Read [2] derived scveral theoretical results about the number of polyominoes.
He presented a method for deriving generating functions to calculate the number
of polvominoes, but these become intractable very quickly. He calculated free(p)
for p up w0 10, but his value for size 10 was incorrect.

Klarner [3] found bounds for free(p) and fixea(p); the upper bound was
improved by Klarner and Rivest [4]. The limits of the pth roots of free(p) and
fixed(p), as p approaches infinity, were shown to be equal and between 3.72 and
4.65. Obviously then, free(p) and fixed(p) are exponential in p.

Lunncon [5] has made the most successful previous enumeration. He computed
the number of free, fixed, and symmetric polyominoes up to size¢ 18. We believe
his results for size 17 are incorrect. Our work is most closely related to Lunnon’s.

3. Syrumetries of polyominoes

The key to the difference between fixed and free polyominoes is the symmetries
of polyominces. Every free polyomino corresponds to one, two, four, or eight
fixed polyominoes, depending on its symmetry. For ¢.ample, a very symmetric
free polyomino, such as

oo
oo

corresponds to only one fixed polyomino. An asymmetric free polyoinir:o, on the
other hand, can be rotated and reflected to yield eight fixed ones, as in this

Counting polyominoes 193
example:
] u|
8oo o0n

i S :
5] 0 oo 23

A. polyomino is said to have a certain symmetry if it is invariant under the
ransformation(s) associated with that symmetry. Since, for example, the
polyominc

oo
oo

is unchanged when rotated by = radians, it is said to be rotationally symmetric.
Symmetries of free and fixed polyominoes are similar, but only fixed polyomino
symmetries involve orientation (for example, reflection in the horizontal axis).

Table 1 catalogues the symmetries of polyominoes. The parenthetical note in a
transformation (the last column) orients it for fixed symmetries; without this
orientation, the transformation is that of a free symmetry. Two pairs of transfor-
mations differ only in orientation, and therefore each pair gepresents one free
symmetry. The index of a symmetry is the number of fixed polyominoes corres-

Table 1
Free Fixed Index Example Transformation(s)
none N 8 SDD none
rot R 4 oo rotation bv 7 radiaas
0a
axis H 4 BD reflection in (horizoatal) axis
a
axis \% 4 DBD reflection in (vertical) axis
diag A 4 DB reflection in (ascending) diagonal
diag D 4 BD rzflection in (descending) diagonal
rot 2 R2 2 0 rotation by 1 radians
= ;T }
O
axis 2 HVR 2 min] reflection in either ax:s,
or rotation 9y w radians
diag 2 ADR 2 | reflection in either diagonal,
¢ ': G or rotation by w radians

all HVADR2 1 | all of the above

194 D.H. Redelmeier

ponding :0 each free polyomino wv.ith that symmetry. The columns labelled ‘Free’
and ‘Fixed" give our names for the free and fixed symmetries, respectively.

We call each symmetry wich index 4 simple because it has one transforn:ation
associated with ‘t. Each symmetry with index less than 4 is composite since it has
several transfors.uaticns associated with it. Note thac the transformation of R2
subsumes rotaticn by m radians. Each composite symmetry includes simple
symmetries in the sense that any polyomino with a composite symmetry will also
have simple symmetry: one simple symmetry for each of the composite sym-
metry’s transformations. For example, HVR symmetry includes H, V, and R
symmetries. Not all combinations of simple symmeitrics exist as composite sym-
metries because some combinations imply further symmetry. Thus H and V
symmetry together imply R symmetry.

‘We shall use the name of a symmetry to denote the function that maps «
polyomino size into the number of polyominoes of that size having only that
symmetry. Thus N(p) is the number of fixed polyominoes of size p with no
symmetry. We shall also put a prime after the symmetry name to denote the
mapping yielding the number of polyominoes with at least that symmetry. Thus

W'(p) = H(p)+HVR(p) + HVADR2(p)

N'(p) and fixed(p) are obviously equivalent.

Most polyominoes have no syminetry, since requiring a symmetry reduces the
“degree of freedom” in constructing a polyomiro. With any simple symmetry, the
position of roughly half the cells almost completely specifies where the remaining
cells must be placed. Since fixed(p) is expenential in p, the number of simply
symmetric polyominoes of size p is roughly proportional to /fixed(p). Similarly,
there are many fewer polyominoes with composite symmetries than with simple
symmetry. Since most polyominoes are asymmetric, fixed(p) is close to eight times
free(p), for large enough p.

4. How many polyominoes are there?

Although it is known that both free(p) and fixed(p) are exponential in p there
1s no kown formula for eitter. To calculate values for them, we must fall back on
exhaustive enumeration.

Enumerating polyominoss is very expensive. The cori is directly proportional to
the number enume:ated, and, in the range we are concerned with, each unit
increase in p increases the numbers of polyominoes hv a factor of almost four.
The most successful enumeration to daie {5} used 175 hours of compurter time.
Clearly, to get much farther, we must be miuch more efficient.

For a given p, we wouid like to generate and count every free polyomino of size
p cxactly oncc. We do niot know how to do this withnut generating a larger set

Counting polyominoes 195

and rejecting unacceptable members, expending effort in generating useless
configurations, and in testing each configuration. In fact, this larger set is at least
the fixed polyominoes. ,

We do know how to generate fixed polyominoes without generating useless
configurations. It turns out that this generation is quite efficient, largely because
no configuration need be rejected and therefore no testing is needed. In fact, we
can compute fixed(p) faster than free(p) even though there are almost eight times
as many polyominoes to count.

We have also developed separate methods to generate polyominoes that are
constrained to have at least a given simple fixed symmetry. These methods are
almost as fast, per polyomino counted, as the fixed polyomino generator. Thus we
can calculate the primed simple symmetry functions relativelv cheaply. We can
also piggyback on these the primed composite symmetry function computations.

There is a well known way to count cattle in a herd: count the number of legs
and divide by four. We apply this technique in calculating free(p). We first
enumeraie fixed(p). We then separately enumerate the primed symmetry func-
tions, and derive from them their unprimed counterparts. Finally, we derive
free(p) from these figures: free(p) is the sum, for each fixed polyomino, of the
inverse of the index of the polyomino’s symmetry. Thus, an asymmetric fixed
polyomino counts as one-eigth of a free polyomino, whereas an HVADR?2 fixed
polyomino counts as one free polyomino.

Since the number of symmetric polyominoes is proportional to vfixed(p). and
since the cost of our enumeration is proportional to the number of items
enumerated. the dominant computation will be the enumeration of fixed(p).

5. An Algorithm to enumerate fixed polyominoes

To ensure fixed polyominoes a.e counted exactly once, we define a canonical
form for them. In this form there is a cell at the origin of the Cartesian lattice, nc
cell, below the x-axis, and no cells to the left of the origin on the axis. Tnis forces
the ieft-most cell of the bottom row of the polyomino to be at the origin.

The algorithm calculates fixed(p) for all p up to a specificd limit P, using a
depth-first traviersal of a “family tree” of all polyominoes. Each child polyomino
in ‘he tree consists of its parent plus one new adjacent cell. The cell is chosen so
thz: no older brother or ancestor’s older brother contains it (however their
oftspring might). Equivalently, no yourger brother or younger brother’s offspring
will be allowed to contain the cell. All of the child’s ofispring inherit the cell so
that the child and its offspring are all different trom the child’s younger brothers
and the younger brothers’ offspring. A child is different from all its ancestors.
Since being different is symmetric, it can be seen that every node in the tree must
be different from every other.

196 D.H. Redelmeier

The following routine is given a polyomino (the parent) and a set of untried
points. The untried set contains all points that are adjacent to the parent and have
not been used by the ancestors (including the parent) or the ancestors’ oider
brothers. Tiie following steps are repeated until the untried set is exhausted. Each
iteration generates a child of the parent. Each recursion generates all the offspring
of the current child.

Remove an arvitrary element from the untried set.

Place a cell at this point.

Count this new polyomino.

If the size is less than P:

(a) Add new neighbours to the urtried set.

(b) Call this algorithm recursiveiy with the new parent being the
current polyomino, and the new untried set beiag a copy of the
current one.

(¢) Remove the new neighbours from the untried set.

5. Remove newesl cell.

bl S

The algorithm is started with the parent being the empty polyomino, and the
untried set contzining only the origin.
At any one time, each point in the fie’d can be in one of four states:

Border: pcints below the x-axis and points left of the y-axis on the
X-axis.

Occupied: points occupied by cells of the polyomino.

Keachable: unoccupied non-border points adjacent to cells of the
polyomino.

Free: points that are none of the above, and therefore candidates for
becoming Reachable and then Occupied.

The only information actually needed by the algorithm is whetker = puint is
Free or not. This information allows Step 4(a) to decide if a neighbour is new or
not. The infcrmation is updated in Step 4(a) when the new points are added to the
untried set, and then restored in Step 4(-) when they are removed. Note that the
information is not changed in Step 1.

The untried set contains those Reachable points that have not been tried by the
current invocation of the algorithm or its recursive ancestors. While a puoint is in
the untried set at some level in the recursion, it cannot be added to the untried set
of another level. Otherwise a point could become a new neighbour while it is an
old one. A point may, however, be in several untrie! sets at once due to
inheritance. An invocation of the algorithm will, itself, count each polyomino
containing the parent and a cell at a point in the untried sct (the parent’s
children). An invocation will, by itself and using recursion, court each polycmino

Counting polyominoes 197

containing the parent anc cells that are at points in the untried set or points
currently Free (the parent’s offspring).
The operations performed on the untried set are:

—removing an arbitrary element (Step 1),

- adding new elements (Step 4(a)),

- copying and passing as a parameter (Step 4(b)).
- removing new elements (Step 4(c)).

All operations can fit into a stack discipline where elements are removed in the
reverse of the order they were addea. The arbitrary element chosen in Step 1
would then be the newest element.

The successor of an element in the untried set is the next-newest element. Note
that, due to the stack discipline, the successor of an element never changes. Even
though a point can be «n element in se veral untried sets, its successor in each case
will be the same point: a point’s successor is determined when the point becomes
a new neighbour, and is not changed by inheritance.

A natural way to implement the untried set is, for each point in the field, to
iave a place to name its successor in all current untried sets. This allows an
untried set to be represented by the name of its first (newest) element, with each
element naming its successor—a linked list. All the operations used are then quite
efficient:

- Removing an element is done by considering the successor of the
current first element to be the new first element.

- Adding a new point is done by setting the successor oi the new point to
be the current first element, and then considering the new point to be
the first element.

— Passing the list as a pararzster is done by passing the name of the first
element. Thus the whole set need not be copied.

Both Free information and successor information are naturally represented as
matrices, with one element for each point in the field that can be used. These
matrices represent points with y co-ordinates between —p+1 and p—1, and x
coordinates between —1 (for the border) and p— 1. Slightly more than half the
points within these bounds can ncver be used, but this causes no problems.
Locations of points are then naturally represented as subscripts for these matrices.

All polyominoes generated will be in canonical form. All will have a cell at the
origin because that is the only point in the initial untried set. Nc points will be
placed below the x-axis or on it to the left of the origin because of the definition
of Free for determining new neighbours.

198 D.H. Redelmeier
6. Enumeraiing symmetric fixed polysminoes

In this section, we describe liew to compute the number of symmetric fixed
polyominoes of each kind: the “primed” functions. We shall see thai some of the
functions can be derived from others, but some require enumeratior:. All compu-
tations involve modified versions of the enumeration algorithm used for fixed
polyominoes.

The general strategy used to enumerate symmetric polyominoes with a given
simple symmetry is 1o identify each point in the field with its image under the
symmetry’s transformation. PPoints in the axis of symmetry, or at the centre, are
already their own image. Whenever a zell is placed at a point, one is placed at the
point’s image. Similarly, whenever a point becomes a new neighbour, its image
does too. But, of course, the new neighbour and its image are the same new
neighbour, and they become one entry in the untried set. In general, each point
and its image are represented by a unique “epresentative (usually the one in the
upper half of the field). When calculating tlie size of a polyomino, however, each
cell and its distinct image(s) are counted separately. Thus the generated
polyominoes will be invariant under the transformation (that is, symmetric) by
construction.

The first step in the analysis is to break the primed functions down further,
based on whether an axis of symmetry or centre is at a point, or is between points.
For example, consider the HVADR?2 polyomino and the two V polyominoes

0 0
DEI'[J oo 0oDao

The centre of the HVADR?2 polyomino is a point, while the axes of symmetry of
the two V polyominoes run through and between (columns of) points, respec-
tively. If a symmetric polyomino has a centre at a point, or an axis of symmetry
running thicagh noints, we add an “I” to the symmetry name. Similarly, if the
centre is between points, or the axis runs between rows or columns of points, we
add an “X” to the name. Thus, the example polyominoes have, respectively,
HVADR?2I, VI, and VX symmetry.

HVR and R symmetries have a centre that can be independently 1" or “X" in
the vertical and horizontal dimensions. For example,

oog .
0oo

nas HVRXI symmetry since the centre is between rows but irside a column. Note
that the X symmetries are mutually exclusive of the I symmetries in each
dimension.

The following list shows how “X” and “I” can be combined with fixed
symmetries.

Counting polyominoes 199

N has neither axis nor centre,

H=HX+HI,

V=VX+VI,

R=RXX+RXI+RIX+RII,

A and D have an axis which runs both between and through cells,
HVR =HVRXX+HVRXI+HVRIX+HVRII,

R2 =R2X+R2I,

ADR = ADRX + ADRI,

HVADR2 =HVADR2X+HVADR2I.

Now let us look at each symmetry function individually.

HX'(p) is zero if p is odd since everv cell in an HX' polyomino implies its
image’s existence, and a cell must be distinct from its image. When p is even,
HX'(p) equals N'(3p): and N’ polyomino can be turned into an HX' polyomino of
twice the size by reflecting the original at its bottom edge, and the reverse
operation of slicing an HX' polyomino along its axis yields an N’ polyomino.

To enumerate HI' polyominoes, we usz the general strategy of identification
outlined above. In our canonical form, the x-axis is the axis of symmetry, and the
left-most cell on the axis is forced to be at the origin. For each pair of identified
points, the one above the axis is taken as the representative. There is no
interaction between the upper and lower half of the field so that only representa-
tive points are used. We forbid representative cells to be placed below the axis, or
to the left of the origin on the axis. It turns out that the HI' enumerator is
identical to the fixed enumerator except in calculating the size of polyominoes
produced: each cell off the x-axis represents two; each on the axis represents only
one.

VX'(p) is equa! to HX'(p) and VI'(p) is equal to HI'(p), of course.

A'(p) is computed by a modified version of the HI'(p) enumerator. The change
is a kind of counterclockwise rotation by iw of the field. Thus, the diagonal takes
the place of the x-axis. The initial cell is the same: the origin. The canonical form
of an A’ polyomino has the lowest ceil on the diagonal of symmetry at the origin.

D'(p) equals A'(p).

In a rotationally symmetric polyomino, only a cell at the centre can be its own
image. Thus rotationally symmetric polyominoes have an odd size if and only if
they have a centre cell. Let us consider the enumeration of odd-sized and
even-sized rotationally symmetric polyeminoes separately.

All odd-sized rotationally symmetric pc.yominoes have at least RII symmetry
since the centre must be a cell, and therefore not between points. The canonical
form of RII' polyominoes has the centre cell at the origin. Unlike previous
enumerators, growth in the upper and lower halves of the field interact, so we

must actually place image cells, and mark unfree image new-neighbours. No cells
ueed be torbidden to force the canonical form.

200 D.H. Redelmeier

The enumeration of even-tized rotationally symmetric polyominoes is the most
complex. In every other case, polyominoes are grown, starting from a polyomino
with one cell (or onz cell plus its imag2) having the desired pror *rty. Unfortu-
nately, not all even-sized rotationally symmetric polyominoes contain an approp-
riate subpolyomino. For example, removing iy cell plus its image from

a
3

ooo
aoo

causes it to be disconnected, and thus it c¢ inot be grown from a smaller
polyomino.

A simple way to enumerate even sized rotationally symmetric polyominoes
would be to grow symmetric collections of cells, and count each one only if it is
connected. Unfortunately this method is quite slow because most configurations
generated would .ot be connected. We use a faster and more complicated
method.

Every rotationally symmetric polyomino contains a collection of symmetric
subpolyominoes sharing its centre. This collection is never empty since it at least
contains the original polyomino. Some of these subpolyominoes are minimal in
the sense that removing any cell and its image would disconnect the polyomino.
Of these minimal subpolyominces, there is exactly one that surrounds the
minimum number of points. This subpolyomino is called the ring. In odd-sized
rotationally symmetric polyominoes, the ring is the centre cell, but in even-sized
polyominoes the ring may be quite large. Here are a few polyominoes with their
ring cells denoted by =

00 L L e EEEER8 000 EEanREi
] B @8 B OO @ ERE 8
m} | BeE B]] R CEB e B
oo i 11 8 00 @&

EEERae aasaae®R 000

As these examples demonstrate, rings surround a (possibly empty) part of the
field, hence their name. It is also notable that each cell in a ring touches :xactly
two others in the ring, except in degenerate rings of one or two cells. If this were
not the case, some cell ard its image could be removed without cutting the ring.

Our enumeration method generates each possible ring, and then from these it
grows each possible rotationally symmetric polyomino. Once the ring is gener-
ated, connectivity need never be a problem since each new cell may be placec
adjacent to the rest of the polyomino. What is important, Loweve:. is that the ring
from which a polyomino is grown muc:t be the ring of that noiyomino, s that each
polyomino is generated only once.

To ensure this last property, growth inside the ring is restricted to ensure that it
does not make any part of the ring removable. All growth inside the ring must be
connected to the ring. Any subpolyomino inside the ring that touches the ring

Counting polyominoes 201

must touch it at one edge, or at most two edges that are co-linear and adjacent, in
order not to ‘‘short-circuit™ the ring. Here are two examples of filled rings.

5 @y
el
Buclef 50 B E

Illlglll

The methods used to grow rings and then their offspring are fairly straightfor-
ward.

All remaining symmeiries are composite. Several can be computed directly
from these relations:

HVRXX'(2p) =HX'(p).
HVRXTI'(2p) = HI'(p),
HVADR2X'(4p) = A'(p).

Unmentioned values of these functions are zero. Other composite symmetries are
enumerated by checking polyominoes generated in simple symmetry enumerators
for additional symmetry.

7. Results

The fixed enumerator has been coded in fewer than fifty statements of the
ALGOL W programmirg language. It has also been coded in the assemoly
language of the PDP-11 computer. This version has been run for polyominoes up
to size 24, taking ten months of CPU time on a PDP-11/70.

The symmetric enumerators have been coded in ALGOL W, and run up to size
25. The total CPU time was less than five minutes on an IBM 370 model 165.
This confirmed our expectation that fixed(p) would be the dominant computation.

Table 2 lists the values of free(p) and fixed(p) for p up to 24. Table 3 lists the
number of polyomino:s of each free symmetry type up to size 25 (except for
none(25), whict: requires fixed(25)).

The values agree with those Lunnon computed except for size 17. In several
runs the program has computed the value of fixed(17) to be 400795844 versus
Lunnon’s value of 400795860. We seem to have two fewer asymmetric free
polyominoes since all symmetric counts agree. If the error is ours, it must be in
our calculation of fixed(17), not in our symmetric enumerators. Because of the
way our program works, it is virtually impossible to calculate fixed(17) incorrectly
and fixed(18) correctly. Lunnon described how an unietected machine malfunc-
tion had caused other results of his to be wrong. He noticed the mistakes due to

]
=
[39]

D.H. Redelmeier

Table 2
free fixed CPU hrs
i 1 1 —
2 1 2 —
3 2 6 —_
4 5 19 —
5 12 63 -—
6 35 216 -—
7 108 760 -—
8 369 2725 ——
9 1285 9910 —
10 4655 36446 -—
11 17073 135268 -—
12 63600 505861 -—
13 238591 1903890 —_
14 901971 1204874 —
15 2426576 27394666 —
16 13079255 104392637 0.148
17 50107909 400795844 0.560
18 192622052 154G520542 2.138
19 742624232 5945738676 8.196
20 2870671950 22964 179660 31.409
71 11123060078 88983512783 126.957
22 33191857688 345532572678 467.053
23 168047007728 1344372325524 1807.263
24 5239088770268 6959.665

554699700403

large discrepancics with predicted values. In this case, the discrepancies are
miniscule. For these reasons, we believe our result 1o be correct.

In one run on a PDP-11/70 the program computad fixed(r) for p up to and
including 18 in two hours. This compares well with Lunnon’s 175 hours, although
his machine (an ATLAS I) was somewhat slower. 1“robably the main reason for
our program being faster is that it need not check for symmetry or canonicity of
generated polyominoes.

It seems unlikeiy that any technique that actually generates every polyomino
could get much farther than ours. The fixed enumerator generates polyominoes at
betier than one every five microseconds. Future work on polyomino enumeration
may be aimed at calculating fixed(p), since we have shown how to compute
free(p relatively cheaply given fixed(p).

Acknowledgments

R.C Read introrluced me to the problem, and suggested I publish my results.
Many people have helped me find spare computer time. R.C. Read, D.A.
Klarner, T.B. Rushwo th, and especially W.D. Elliot deserve thanks for their
constructive criticisms of this paper.

Counting polyominoes

Table 3
all axis 2 rotate 2 diag 2 axis rotate diag none

1 1

2 1

3 1 1

4 1 1 1 1 1

5 1 1 2 1 2 5

6 2 6 5 2 20

7 3 1 9 4 7 84

8 1 4 1 1 23 18 S 316

9 2 4 38 19 26 1196
10 8 1 90 73 22 4461
11 10 2 147 73 91 16750
12 3 15 3 3 341 278 79 62878
13 2 17 2 3 564 283 326 237394
14 30 5 1294 1076 301 899265
15 35 6 2148 1090 1186 342211
16 5 60 12 14 4896 4125 1117 13069026
17 4 64 7 9 8195 4133 4352 50091095
18 117 20 18612 15939 4212 192583152
19 128 20 31349 16105 16119 742560511
20 12 236 44 56 70983 61628 15849 2870523142
21 7 241 25 32 120357 62170 60174 11122817672
22 459 80 271921 239388 60089 43191285751
23 Ty 474 64 463712 240907 226146 168046076423
2420 937 165 224 1045559 932230 228426 654997492842
25 11 21 90 114 1792582 936447 854803 ?

References

[1” S.W. Golomb, Polyominoes (Charles Scribner's, New York, 1965).

[2] F..C. Read, Contributions to the cell growth problem, Canad. J. Math. 14 (1962) 1-20.

[3) D.A. Klarner, Cell growth problems, Canad. J. Math. 19 (1967) 851-863.
[4] D.A. Klarner and R. Riverst, A procedure for improvir.g the upper bound for the number of

n-ominoes, Canad. J. Math. 25 (1973) 585-602.
[5] W.F. Lunnon, Counting polyominoes, in: A.O.L. Atkin, B.J. Birch, eds., Computers in Number

Theory (Academic Press, London, 1971) 347-372.

203

