
Discrete Mathematics 36 (1981) 191-203
North-Holland Publishing Company

D. Hugh REDELMEIER
Department $,f Computer Scietze, Univendy of Toronto, Toronto, Ontario, M5S lA7 Canada

Received 18 September 1979
Revised 22 August 1980

A polyomino is a connected collection of squares on an unbounded chessboard. There is no
known formula yielding the number of distinct polyominoes of a given number of squares A
polyomino enumeration method, faster than any previous, is presented. This method includes
the calculation of the number of symmetric polyominoes. AU polyominoes containing up to 24
squares have been enumerated (using ten months of computer time). Previously, only
polyominoes up to size 18 were enumerated.

1. What is a polyomiao?

A domino is a pa I of equal sized squares touching along a complete edge (we
ignore the spots). Generalizing, a polyomino is a collection of equal-sized squares
in a plane, touching each other along complete edges. We call these squares cek.
Here are a few examples:

0

Every cell need not rour,h
Thus, the pair of cells

00 &I o&l

every other one, but a polyomino must be connected.

cl
0

since they are not connected.
connected graph in which each node (or cell) is

do not constitute a
Formally, a pslyomino is a

identified with a point in the Cartesllan lattice, and edges of the graph join nodes
that are separated by a unit distance. The size of a polyomino is the number cells
it contains.

cerne.l with is “

are two sets of distinguishing rules commonly used, and for each set there is a

192

polyominoes

D.H. Redeheier

B 00

are the same free polyomino since they differ only in orientation. We use free(p)
to denote the number of free polyominoes of size p.

r;E’~c?d polyominoes are considered distinct if they have different shapes or
orientations. Thus the t-tie rJolyominoes above are Mferen?; fixed polyominoes.
We use fixed(p) to denote the number of Cxed polyominoes o:f size p.

The most general discussion of polyominoes is by Golomb [l], however the
number of polyominoes is only briefly discussed. Unlike most later authors
(including us) Golomb does not allow holes in polyominoes. Thus he would not
accept the following as a poiyomino.

Ew
oco

Read [2] derived 3bv.-. .A .- _ _ ---*rot th ---tical results about the number of polyominoes.

HE: presented a method for deriving generating functions to calculate the number
of polvominoes, but these become intractable very quickly. He calculated free(p)
for p up to 10, but his value for size 10 was incorrect.

Klarner [3] found bounds for free(p) and fixes(p); the upper bound was
improved by Klarner and R;vest [4]. The limits of the pth roots of free(p) and
fixed(p), as p approaches infinity, were shown to be equal and between 3.72 and
4.65. Obviously then, free(p) and fixed(p) are exponential in p.

Lunnon [5] has made the most successful previous enumeration. He computed
the number of free, fixed, and symmetric polyominoes up to size 18. We believe
his results for size 17 are incorrect. Our work is most closely related to Lunnon’s.

The key to the difference between fixed and free poiyominoes is the symmetries
of polyominoes. Every free polyomino corresponds to one, two, four, or eight
fixed polyominoes, depending on its symmetry. For tample, a very symmetric
free polyomino, such as

corres

193

example:

A. polyomino is said to have a certain symmetry if it is invariant under the
transformation(s) associated with that symmetry. Since, for example, the
polyominc

is unchanged when rotated by Q radians, it is said to be rotationally symmetric.
Symmetries of free and tied polyominoes are similar, but only tied polyomino
symmetries involve orientation (for example, reflection in the hotizontul axis).

Table 1 catalogues the symmetries of po:yuminoes. The parenthetical note in a
transformation (the last column) orients it for tied symmetries; without this
orientation, the transformation is that of a free symmetry. Two pairs of transfor-
mations diEer only in orientation, and therefore each pair ;tepresents one free
symmetry. The index of a symmetry is the number of fixed polyominoes corres-

Table 1

Free Fixed Index Example Transformation(s)
-- __

none

rot

axis

axis

diag

diag

rot 2

axis 2

diag 2

all

N

R

H

V

A

D

R2

HVADR2

2

2

1

OH0
“B

B0

Q000
EPa

00

O&l

Tn

III

none

rotation by v raclians

reflection in (horizontal) axis

reflection in (vertical) axis

reflection in (ascending) diagonal

r&&ion in (descending) diagonal

rotation by HIT radians

reflection in eitkr axis,
or rotation ITS ?T radians

reflection in either diagonal,
or rotation by 3 radians

194 W.H. Recleheier

ponding ?O each free polyomino with that symmetry. The columns labelled “Free’
and ‘Fixed’ give our names for t me free and fixed symmetries, respectively.

We call each symmetry with index 4 simple because it nas one transformation
associated with 3, Each symmetry with index less than 4 is composite since it has
cpl’pral transfor.),:-itic;:s ;?ssaciatecI with it. Note thar the transformation of R2 “V.”
subsumes rotation by n radiant. Each composite symmetry includes simple
symmetries in the sense that any polyomino with a composite symmetry will also
have simple symmetry: one simple symmetry for ea*ch of the composite sym-
metry’s transformations. For example, HVR symmetry includes H, V, and R
symmetries. Not all combinations of simple symmetries exist as composite sym-
metries because some combinations i!mply further symmetry. Thus H and V
symmetry together imply R symmetry.

We shall use the name of a symmetry to denote the function that maps ;r
polyomino size into the number of polyominoes of that size having only that
symmetry. Thus N(p) is the number of fixed polyominoes of size p with no
symmetry. We shah also put a prime after the symmetry name to denote the
mapping yielding the number of po.lyominoes with at least that symmetry. Thus

H’(,n’ = H(p) + HVR(p) + II’L4DR2(p) ,

N’(p) and fixed(p) are obviously equivalent.
Most polyominoes have no symmetry, since requiring a symmetry reduces the

“degree of freedom” in constructing a polyomino. With any simple symmetry, the
position of roughly half ;he cells almost completely specifies where the remaining
cells must be placed. Since fixed(p) is exponential in p, the number of simply
symmrtric polyominoes of size p is roughly prl)portional to filed(p). Similarly,
there are many fewer polyominoes with composite symmetries than with simule
symmetry. Since *most polyominoes are asymmetric, fixed(p) is close to eight times
free(p), for large enough p.

oes are em?

Although it is known that both free(p) and fixed(p) are exnonentiai in F there
is no Kt,own formula for eitl er. To calculate values for them, we must f’all back on
exhaustive enumeration.

Enumerating polyominccs is very expensive. The coca is directly proportional to
the rjumber enumerated, and, in the range we are concerned with, each unit
increase in ;I increases the numbers of polyominoes bv a factor of almost four.
The most successful. enumeration to date [S; used 175 hours of computer time.
Clearly, to get much Girther, we must be r,iuch more efficient.

given p, we worjld like to generate and y free polyomi
“\l?‘C do not know

Counting polyominoes 195

and rejcctiing unacceptable members, expending effort in generating useless
configurations, and in testing each configuration. In fact, this larger set is at least
the fixed polyominoes.

We do know how to generate fixed polyominoes without generating useless
configurations. It turns out that this generation is quite efficient, largely because
no configuration need be rejected and therefore no testing is needed. In fact, we
can compute fixed(p) faster than free(p) even thutigh there are almost eight times
as many polyominoes to count.

We have also developed separate methods to generate polyominoes that are
constrained to have at least a given simple fixed symmetry. These methods are
almost as fast, per polyomino counted, as the fixed polyomino generator. Thus we
can calculate the primed simple symmetry functions relatively cheaply. We can
also piggyback on these the primed composite symmetry function comyputations.

There is a well krrown way to count cattle in a herd: count the number of legs
and divide by four. We apply this technique in calculating free(p). We first
enumerate fixed(p). We then separately enumerate the primed symmetry func-
tions, and derive from them their unprimed counterparts. Finally, we derive
free(p) from these figures: free(p) is the sum, for each fixed polyomino, of the
inverse of the index of the polyomino’s symmetry. Thus, an asymmetric fixed
polyomino counts as one-eigth of a free polyomino, whereas an IIVADR2 fixed
polyomino counts as one free polyomino.

Since the number of symmetric polyominoer is proportional to w, and
since the cost of our enumeration is proportional to the number of items
enumerated, the dominant computation will be the enumeration of fixed(p).

to en emte OeS

To ensure fixed polyominoes a;e counted exactly once, we define a canonical
form for them. In this form there is a cell at the origin of the Cartesian lattice, no
cell; below the x-axis, and no cells to the left of the origin on the axis. Tnis forces
the ieft-most cell of the bottom row of the polyomino to be at the origin.

The algorithm calculates fixed(p) for all p up to a s;tiecifited limit k): using a
depth-first traversal of a “f
in ‘he tree consists of its par i\e cell is chosen so

thzl no older brother or ancestor’s olde
o&pring might). Equivalently, no youilger
will be allowed to contain t

196 D.H. h!edelmeizr

The following routine is given a po’lyomino (the parent) and a set if untried
points. The untied set contains all points that are adjacent to the parent and have
not been used by the ancestors (including the parent) or the ancesto:rs’ udder
brothers. Tke following steps are repeateo until the untried set is exhaustted. Each
iteration generates 11 child of the parent. Each recT>rsion generates all the offspring
of the current child.

1. Remove an arbitrary element from the untried set.

2. Place a cell at this point.
3. Count this new polyomino.
4. If the size is less than P:

(a) Add new neighbours to the ur tried set.
(b) Call this algorithm recurski) with the new parent being the

current pol)/omino, and the new untried set being a copy of the
current one.

(c) Remove thl:,: new neighbours from the untried set.
5, Remove .?ewesI cell.

The algorithm is started with the parent being the empty polyomino, and the
IAntried set containing only the origin.

At any one time, each point in the fieBd can be in one of four states:

&r&r: points below the x-axis and points left of the y-axis on the
X-aXiS.

Occupied: points occupied b!, cells of the polyomino.

Reachable: unoccupied non-border points adjacent to cells of the
polyomino.

Free: points that are none of the above, and therefore candidates for
becoming Reachable and then Occupied.

The only Information actually needed by the algorithm is whether 7 pkt is
Free or not. This information allows Step 4(a) to decide if a neighhour is new or
not. The infer-nation is updated in Step 4(a) when the new points are added to the
untried set, and then restored in Step 4((-) when they are removed. Note that the
information is not changed in Step 1.

e untried set contains those Reachable points that have not been trick by the
current invo(*ation of the algorithm or its recursive ancestors. While a point is in
the ;intried set at some level in the recursion, it cannot be ;\dded to the untried set
of another level. Otherwise a point could become a new netghbour while it is an
old one. A point may, however, be in several untried sets at once due to
inheritance. An invocation of the algorithm will, itself, coupt each polyomino

ining the parent and nt in the untried s,?t he p%uent’s

C mnting polyominoes 197

containing the parent an6 cells that are at points in the untried set or points

currently Free (the parent’s off spring).
The operations performed on the untried set &>re:

-removing an arbitrary element (Step l),
- adding new elements (Step 4(a)),
- copying and passing as a parameter (Step 4(b))!
-removing new elements (Step 4(c)).

All operations can fit into a stack discipline where elements are removed in the
reverse of the order they were added. The arbitrary element chosen in Step 1
would then be the newest element.

The successor of an element in the untried set is the next-newest element. Note
that, due to the stack discipline, the successor of an element never changes. Even
though a point can be zin element in se deral untried sets, its successor in each case
will be the same point: a point’s successor is determined when the point becomes
a new neighbour, and is not changed by inheritance.

A natural way to implement the untried set is, for each point in the field, to
2ave a place to name its sucessor in all current untried sets. This allows an
un~tried set to be represented by the name of its first (newest) element, with each
element naming its successor- a linked list. All the operations used are then quite
efhcient:

- Removing an element is done by considering the successor of the
current first element to be the new first element.

- Adding a new point is done by setting the successor or* the new point to
be the current first element, and then considering the new point to be
the first element.

- Passing the list as a parar; .- ‘Oter is done by passing the name of the first
element. Thus the whole set need not be copied.

Both Free information and sueiessor information are naturally represented as
matrices, with one element or each point in the field that can be used. These
matrices represent points w h y co-ordinates between -p + 1 and p - 1, and x
coordinates between -1 (for the border) and p - 1. Slightly more than half the

but this causes no problems.

All polyominoes ge
origin because that is

19x D.H. Redelmeier

In this section, we describe 1 low to compute the number of symmetric Sxed
polyominoes of each kind: the “primed”’ functions. We shall see tha; some of the
functions can bt derived from others, but ‘some require enumeration. All compu-
tations involve modified ver.l;ions of the enumeration algorithm used for fixed
polyominoes.

The general strategy used to enumerate symmetric polyominoes with a given
simple symmetry is to identify each point in the field with its image under the
symmetry’s transformation. Points in the axis of symmetry, or at the centre, are
already their own image. Whenever a sell is placed at a point, one is placed at the
point’s image. Similarly, whenever a point becomes a new neighbour, its image
does too. Bet, of course, the new neighbour and its image are the sanze new
neighbour, and t4ey become one entry in the untried set. In general, each point
and its image are represented by a unique **epresentative (usually the one in the
upper half cf the field). When calculating the size of a polyomino, however, each
ce!l and its distinct image(s) are counted separately. Thus the generated
palyominoes will be invariant under the transformation (that is, symmetric) by
constructim.

The first step in the analysis is to
based on whether an axis of symmetry
For 5:xample. consider the HVADR2

break the primed functions down further,
or centre is at a point, or is between points.
polyomino and the two V polyominoes

The centre of the HVADR?: polyomino is a point, while the axes of symmetry of
the two V polyominoes run through and between (columns of) points, respec-
tively. If a symmetric yolyomino has a centre at a point, or an axis of symmetry
running thretigh r;oints, we add an “I” to Ihe symmetry name. Similarly, if the
centre is between points, or the axis runs between rows or columns of points, we
add an “X” to the name. Thus, the example polyominoes have, respectively,
HVADR21, VI, and YX symmetry.

HVR and R symmetries have a centre that can be independently “I” or “X“ in
the vertical and horizontal dimensions. F,or example,

has HVRXI symmetry sin!:e the ientre is between rows but irside a column. Note
that the X symmetries are mutually exclusive of the I symmetries in each
dimension.

The following list shows how “X” anct “I” can be combined with fixed
symmetries.

Counting polyorninoes 199

N has neither axis nor centre,
H=HX+HH,
V=VX+VI,
R=RXX+RXI+RlX+RII,
A and D have an axis which runs both between and through cells,
HVR = HVRXX + HVRXI + HVRIX + HVRII,
R2 = R2X + R2I,
ADR = ADRX + ADRI,
HVADR2 = HVADR2X + HVAD

Now let us look at each symmetry function individually.
HX’(p) is zero if p is odd since evepr cell in an HX’ polyomino implies its

image’s existence, and a cell must be distinct from its image. When p is even,
HX’(p) equals N’($p): and N’ polyomino can be turned into an HX” polyomino of
twice the size by reflecting the original at its bottom edge, and the reverse
operation of slicing an HX’ bolyomino altDng its axis yields an N’ polyomino.

To enumerate HI’ polyominoes, we use the general strategy of identification
outlined above. In our canonical form, the x-axis is the axis of symmetry, and the
left-most cell on the axis is forced to be at the origin. For each pair of identified
points, the one above the axis is taken as the representative. There is no
interaction between the upper and lower half of the field so that only representa-
tive points are used. We forbid representative cells to be placed below the axis, or
to the left of the origin on the axis. It turns out that the HI’ enumerator is
identical to the fixed enumerator except in calculating the size of polyominoes
produced: each cell off the x-axis represents two; each on the axis represents only
one.

VX’(il) is equal to HX’(p) and VI’(p) is equal to HI’(p), of course.
A’(p) is computed by a modified version of the HI’(p) enumerator. The change

is a kind of counterclockwise rotation by 4$rr of the field. Thus, the diagonal takes
the place of the x-axis. The initial cell is the same: the origin. The canonical form
of an A’ polyomino has the lowest ceil on the diagonal of symmetry at the origin.

D’(p) equals A’(p).
In a rotationally symmetric polyomino, only a cell at the centre can be its own

image. Thus rotationally symmetric polyominoes have an odd size if and only if
they have a centre cell. Let us consider the enumeration of odd-sized and
even-sized rotationally symmetric polyominoes separately.

All odd-sized rotationally
since the ccntre must be a c

II’ polvominoes
enumerators, growth in the upper and lower halves of t

ust actually place i

200

The enumeration of even-sized rotationally symmetric polyominoes is the most
complex. In every other case, polyominoes are grown, starting from a polyomino
with one cell (or on.; cell plus its image) having the desired prop rty. Unfortu-
nately, not all even-sized rotationally symmetric polyominoes contain an approp-
riate subpolyomino. For example, removing _4y cell plus its image from

causes it to be disconnect:& and thus it cc” lnot be grown from a smaller
polyomino.

A simple way to enumerate even sized rotationally symmetric polyominoes
would be to gx-ow symmetric collections of cells, and count each one only if it is
connected. Unfortunately this method is quite slow because most configurations
generated would -lot be connected. We use a faster and more complicated
method.

Every rotationally symmetric polyomino contains a collection of symmetric
subpolyominoes sharing its centre. This collection is never empty since it at least
contains the original polyomino. Some of these subpolyominoes are minimal in
the sense that removing any cell and its image would disconnect the polyomino.
Of these minirnal subpolyominoes, there is exactly one that surrounds the
minimum number of points. This subpolyomino is called the tirtg. In odd-sized
rotationally symmetric polyominoes, the ring is the centre cell, but in eliren-sized
polyominoes the ring may be quite large. Here are a few polyominoes with their
ring cells denoted by

As these examples demonstrate, rings surround a (possibly empty) part of the
field, hence their name. It is also notable that each cell in a ring touches exactly
two others in the ring, except in degenerate rings of one or two cells. If this were
not the case, some cell and its image could be removed without cutting the ring.

Our enumeration method generates each possible ring, and then from these it
grows each possible rotationally symmetric polyomino. Once the ring is gener-
ated, connectivity need never be a problem since each new cell may be placec
adjacent to th’e rest of the polyomino. What is important, l-owevcr, is that the ring
from which a lplolyomino is grown mut be the ring of that rjoiyomino, !: that each
polyomino is generated only once.

To ensure this last property, growth inside the ring is restricted to ensure that it
doe5 not make any part of the ring removable. All growth inside the ring. must be
connected to the ring. Any subpolyomino inside the ring that touches the ring

Counting polyominoes 201

must touch it at one edge, or at most two edges that are co-linear and adjacent, in
order not to “short-circuit’? the ring. Here are two examples of filled rings.

The methods used to grow rings and then their offspring are fairly straightfor-
ward.

All remaining symmetries are composite. Several can be computed directly
from these relations:

HVRXX’(2p) = HX’(p)_
HVRXI’(2p) = HI’(p),
HVADR2X’(4p) = A’(p).

Unmentioned vahes of these fulrctions are zero.
enumerated by checking polyominoes generated
for additional symmetry.

Other composite symmetries are
in simple symmetry enumerators

The fixed enumerator has been coded in fewer than fifty statements of the
ALGOL W programming language. It has aIso been coded in the assembly
language of the PDP- 11 computer. This version has been run for polyominoes up
to size 24, taking ten months of CPU time on a PDP- 1 L/70.

The symmetric enumerators have been coded in ALGOL W, and run up to size
25. The total CPU time was less than five minutes on an IBM 370 model 165.
This confirmed our expectation that fixed(p) would be the dominanrt computation.

Table 2 lists the values of free(p) and fixed(p) for p up to 24. Table 3 lists the
number of polyomino:s of each free symmetry type up to size 25 (except for
none(25), whict requires fixed(25)).

The values agree with those unnon computed except for size 17. In several
runs :he program has computed the value of ed(l7) to be 400795844 versus

FoPyominoes since a
our calculation of fi
way our program works, it is v~t~ally

202 D. H. Redeheier

Tat-k 2

fret fiXCC1 CPU hrs

1

2
3
4

5
6
7
8
9

IO

I1

13

II;

14

95

16

17

18

19

20

“‘I

‘2

2.3

23

1
1
2
5

12
3s

108

369
12x5

4655
17073
63600

238591
901971

3426,‘,76
13079x5
50107~909

192622OS2
742624232

287067 1.9%
1 1 12306M’78
33191857688

168047007728
‘549997CVlA~U , ., ., . II

1 -

2 -

6 -

19 -

63 _-

216 _-

760 _-

2725 _-

9910 -

36446 _-

135268 _-

50586 1 --

1903890 -

“204874 -

Et’394666 -

104192937 0.148

4007(iS844 0.560
154CA20542 2.138
59X 738676 8.196

2296h 179660 3 1.409

88983512783 126.957
345532572678 467.053

1344372335524 1807.263
<‘Y400?2!277()2fj8 d-d,,, c, 6959.665

large discrepancicg; with p;_edicted values. In this case, the discrepancies are
miniscule. For the se reasons, we believe our result to be correct.

In me run on ;i PDP-H/70 the program computed fixed(r) for p up to and
including 18 in two hours. This compares well with Lunnon’s 175 hours, although
his ms!cTtine (an ATLAS I) was somewhat slower. l’robably the main reason for
our program being faster is that it need not check for symmetry or canonicity of
generated polyominoes.

It seems unlike’ly that any technique that actually generates every polyomino
could :get much farther than ours. The fixed enumerator generates polyominoes at
betrer than one every five microseconds. Future work on polyomino enumeration
magi be aimed at calculating fixed(p), since we ha\ e shown how to compute
free{ p relatively cheaply given fixed(p).

eats

R.C Read introduced me to the problem, and suggested. I publish my results.
any people have helped me find splnre computer time. R.C. Re:aC, D.A.

Elliot deserve thanks for their
aper.

Counting pozyol?linoes 203

Table 3

all axis 2 rotate 2 diag 2 axis rotate diag none

1

1
1

1
2

3
2

5
4

12
7

1
1
1
1
2
3
4
4
8

10
15
17
30
35
60
64

117
i28
236
241
459
475
937
312

1

3
2

12
7

44
25

165
JO

1
1

1
2
3
3
5
6

14
9

20
20
56
32
80
64

224
114

1 1
2 1
6 5
9 4

23 18
38 19
90 73

147 73
341 278
564 283

1294 lo76
2148 1090
4896 41.?5
8195 41133

18612 15939
3 1349 16105
70983 61628

120357 62170
271921 2 39388
4637 12 240907

1045559 932230
1792582 936447

1

2
2
7
5

26
22
91
79

326
301

1186
1117
4352
4212

16119
15849
60174
60089

226146
228426
854803

1
5

20
84

316
1196
4461

16750
62878

237394
899265
3422 11

13069026
50091095

192583152
7425605 11

2870523142
11122817672
43191285751

168046076423
654997492842

3

References

II’
PI
E3.l
r41

I51

S.‘ti. GJlomb, Polyominoes (Charles Scrkner’s, New York, 1965).
F..C. Read, iSontributions to the cell growth problem, Canad. J. Math 14 (1962) l-20.
C.A. Klarner, Cell growth problems, Canad. J. Math. 19 (1967) 851-863.
L?.A. IGarner and R. Riverst, A procedure for improvirlg the upper bound for the number of
n-o;r.inoes, Canad. J. Math. 25 (1973) 585-602.
W.F. Lurrnon, Counting polyominoes, in: A.O.L. Atkin, L3.J. Birch, eds., Computers in Number
Theory (Academic Press, London, 1971) 347-372.

